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1. Introduction

Improved accuracy of fire and efficient design of anti-

recoil devices cannot be achieved without a detailed knowledge of

the flow field in the muzzle region of a gun, in the short inter-

val of time (of the order of a few milliseconds, at most) between

the first appearance of the projectile and its exit through the

precursor shock wave. Experimental techniques have evolved to a

high degree of sophistication [1,19,20,21] so that a complete

description of one firing can be obtained by a combination of

measurements, photographs and data processing. Innovative

design, however, requires a similar detailed analysis of a large

number of cases, using different models; the task is too time-

consuming and expensive to be accomplished experimentally. Nu-

merical analysis seems to be a possible alternative to experi-

ments, although results prior to the present work have not been J

too encouraging.

The numerical techniques used so far have been largely

inadequate to the task. Certain requirements must be satisfied,

indeed, viz.:

1) The geometry of the muzzle and of the projectile must

be realistic,

2) The computational program must be able to handle more

complicated geometries than just a muzzle and a projectile (for

example, it should include deflectors of arbitrary forms),

3) The motion of the projectile must be realistic,

4) The boundary conditions at all rigid walls must be

properly handled,

5) No artificial outer boundary, capable of introducing

systematic numerical errors, should exist in the program,

6) Shocks should be handled as JLscontinuities satisfy-

ing the Rankine-Hugoniot conditions,

7) Prediction of imbedded shock formation and treatment

of shock interactions should be included in the code,

8) Two different gases, having different molecular

weights and different ratios of specific heats, should be con-

sidered (although their thermodynamical behavior could be assumed
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Introduction

to be that of a perfect gas),
9) Consequently, contact discontinuities should be ex-

plicitly handled by the code,
10) Realistic initial conditions should be used.

Practically, none of the requirements listed above is sa-

tisfied by any of the existing codes (2-9). By and large, most
of such codes are inspired by the early work of the Los Alamos

group C10-12) which has undisputed pioneering merits but, in the

light of modern developments, appears to be representative of a
'brute force' approach, typified by the use of Cartesian, evenly

spaced grids, rudimentary boundaries running along grid lines,
simplistic treatment of boundary conditions, smearing of discon-
tinuities and low order of accuracy of the integration schemes.

A cursory glance at the computational grids used in the

Reports cited above shows not only their inadequacy to provide

appropriate resolution where needed but the unrealistic geometry
of rigid walls as they result from the choice of a basic Carte-
sian mesh (in other words, the mesh determines the wall geometry
whereas the opposite should occur in a realistic computation).
In handling rigid boundaries, large use of reflective cells is

made (a by-product of Cartesian grids and straight boundaries):

this can be a major source of errors [13). The outer boundaries

of the computational region are generally mishandled as well.

Only recently has the majority of numerical analysts accepted the

fact that disturbances produced inside the computational region
must be allowed to propagate outwards without reflecting on any

artificial outer boundary. How to achieve such a goal in prac-
tice, however, is not quite clear yet. SAM4S (the most advanced

code to date and the only code which reflects a real concern for

the treatment of boundary conditions) sets all gradients to zero
at the outer boundaries. Such a procedure is inconsistent with

the outwards physical propagation of disturbances through the

boundaries. This mistake was noticed by Zoltani [141 who tried
using semi-empirical mass sinks. We believe that this approach
is not correct and might be responsible for some of the catas-
trophic Oscillations which the modified SAMS code generates and
which, according to Zoltani, are not smoothed by standard artifi-

cial viscosity devices. Finally, no fitting of shocks and con-
tact discontinuities has been attempted so far; to avoid numeri-
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Introduction

cal instabilities, some forms of damping have to be provided,

which deface the pattern of shocks and contact discontinuities,

typical of the nature of the muzzle flow.

The analysis presented in this paper has been developed

on a philosophy totally different from any previous approach.

Instead of trying to solve the problem on the whole field of in-

terest considered as a single computational region, and using a

single, general-purpose integration technique for the equations

of fluid motion over the entire area, we subdivide the region of

interest into a number of subregions, the inner and outer boun-

daries of which are defined on physical grounds. Each region can

be studied in detail; accuracy is easier to achieve and informa-
tion is not lost. In addition, the analysis of each region is

based on the most sophisticated and efficient numerical tech-

niques currently available, namely, the use of conformal mappings

to define computational grids, the use of the X-scheme, the in-

clusion of viscous effects, and the fitting of shocks and contact

discontinuities.

In the present paper, we describe the calculation from

the instant of firing through the instant at which the bullet to-

tally emerges from the barrel. The analysis is divided into

three parts, originally handled by separate codes:

1) One dimensional flow inside the barrel, in front of

the bullet (code name, NS14)

2) Axisymmetric flow around the muzzle, with the bullet

still inside the barrel (code name, NS9), and
3) Axisymmetric flow around the muzzle during the exit

of the bullet (code name, NS18).

The three codes have been combined into a single one,

named NS21, which provides an uninterrupted description of the

precursor phase of evolution, based solely on geometrical and

internal ballistic data.

-3-
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2. One-dimensional flow inside the barrel

In this calculation, the bullet is assumed to be flat-

faced. This is not a major restriction, due to the scale of the
ogive with respect to the length of' the barrel, and to the fact

that the gas near the bullet front tends to move as a rigid body.

A law of motion of the bullet as a consequence of the firing of

the charge is assumed from empirical data. Generally, the bullet

moves with no initial acceleration; consequently, the first per-

turbation is just a characteristic moving into the barrel at the

speed of sound of the gas at rest. Shortly thereafter, an imbed-

ded shock forms in the perturbed region and rapidly overtakes the

perturbation front. By the time the imbedded shock, which is now

identified with the perturbation front and thus became the pre-

cursor shock, reaches the gun's nuzzle, the flow between the

shock and the bullet is almost uniform.

The calculation is performed, at every step in time,

between the perturbation front and the face of the bullet. Times

are counted from the instant the bullet starts moving. The cal-

culation begins at a time, to, which is very small. The pertur-

bation front is at a distance from the initial location of the

bullet face equal to a ot 0, where a 0is the speed of sound of the

gas at rest. A number of nodes is chosen to define the flow; in-
itially, only two intervals are considered between bullet and

perturbation front; the number of intervals is doubled as the

distance between bullet and perturbation front exceeds a

prescribed multiple of the initial distance; the doubling is re-

peated over and over again, using the same criterion, until a

maximum of 64~ intervals is reached. If the distance decreases,

provision is made for halving the number of intervals.

The length of the computational region Js normalized;

that is, in addition to the physical space coordinate. z, and to

the physical time, t. we use the computational variabi.ps, X ano,

T, related to z and t y



One-dimensional flow inside the barrel

X = (z-b)/(c-b) , T = t (1)

where b and c are the z-coordinates of the bullet face and of the

perturbation front, respectively.

The flow in the barrel is assumed to be inviscid. Let p,

p, S and 0 be the thermodynamical parameters density, pressure,

entropy and temperature, respectively, u the velocity and t the

time. Pressure and density of the gas at rest are assumed as un-

ity; the speed of sound of the gas at rest, divided by the square

root of y, is assumed as the unity of speed. The inner radius of

the barrel is assumed as the unity of length. With a suitable

definition of the unity of time, as the ratio of the unity of

length to the unity of speed, and letting

P = In p p/p (2)

S = y ln - (y-l) P (3)

the equations of motion in the (X,T) frame are:

PT + APx + yX zU X 0

uT + AuX + e PX = 0 (4)

ST + ASX = 0

where

A = uX + Xt  (5)

X = 1/(c-b) , X X [(X-1)b - Xc (6)
z t z t t

The equations of motion are integrated at all nodal

points (including the node on the bullet and the one at the per-

turbation front) using the X-scheme [15]. Special treatments are

given to the boundary points and the points next to the boun-

daries, to avoid using information from outside the boundaries.

Note that at the bullet point we need to compute the pressure on-

ly, since u coincides with the prescribed bt  and S is always

equal to its initial value, assumed as zero. The pressure is,

-5-



One-dimensional flow inside the barrel

thus, obtained by using the equation for left running charac-

teristics:

PT -a tt Uxl) ' + = A - Xza (7)

At the end of the corrector level, at each time step, pressure

and velocity are corrected at the perturbation front, assuming

that it is a shock (obviously, in the first phase of the motion,

such a shock degenerates into a characteristic). Shocks are com-

puted using the post-correction technique [16]. In the case of a

shock moving into a gas at rest with a speed W = ct, we have

3P/3W = 2W/(W 2-6) , aurel/aW 6(6.1) + y/[(6+1)W2 ]

(8)
6 (y-1)12

P ln(W 2-6) - ln(6.1) , U = - 6/(S+I)W - yi'[(8 1)W] (9)
rel

AW -[a(P -P(E))Y( W-u(E))]/[a aP/aW + Y(3u /aW+1)](1O)rel+ rel
(E) (E)

where P), u are the values obtained by integrating the Euler

equations. After updating W, the values behind the shock are

recomputed from the Rankine-Hugoniot conditions. The location of

the shock, c, is updated using

Ac = (ct + fcttAt)at = (W + .AW)At (11)

At every computational step, the value and location of

the maximum pressure gradient is monitored; when it exceeds a

given tolerance (say, 3P/3z>2), an imbedded shock is fitted at

the center of the computational mesh where the maximum gradient

occurs. The interpolated local pressure is assumed to be the

pressure in front of the shock. The pressure at the next node is

assumed as the pressure behind the shock; and the shock Mach

number, initial velocity and other pertinent values are calculat-

ed consistently.

The imbedded shock is computed in a similar way. Let W

be the shock velocity and the values in front of the shock be

denoted by an index, 1; then

-6- i
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One-dimensional flow inside the barrel

Urel : u1 "W rel u rel/al) (12)

2
d=yM -

rel
0

P P + ln d/(8+1) (13)

* 2
Urel S /(8+1) U 1 1 + a1 /(6+1) u lrel

aP/aW - 2 U lrel/(de)
(114)

au/aW (M el+1)/(6+1)

AW - [a(P PE ))+y(u Wu(E))/(a 3P/aW + y au/aW] (15)re 1

3. Numerical results

For a numerical exampie, a 5.56 mm gun was chosen, fc
which the bullet velocity can be defined by the following equa-

tions:

b = E (t/00)5  t<tt 0

bt = At + B + 1/(Ct + D) t>t O

with t = 70, E=1O and A,B,C,D defined by the conditions:0

bt = 1.6807 , b tt .12005 at t=70

bt = 3.5 , btt = .007 at t:125

that is, A=-0.0042, B=4.8983, C=-0.0145, D=O.6739. The velocity
of the bullet as a function of time is shown in Fig. 1. Some
plots of pressure distributions are displayed in Fig. 2.

The peculiar shape of the pressure distribution at the
highest value of time is due to the effect of variable entropy
behind the accelerating imbedded shock.

-7-



First phase of precursor shock evolution

b t

4-

3-:

2

0 20' 40 60 80 100 120 140

Fig.

P 1079

ST 4 97.4

70.5

t&*44.9

0 50 100 150

.~.2



First phase of precursor shock evolution

J4. First phase of precursor shock evolution

As the precursor shock reaches th-' mouth of the barrel,

we start the calculation of the axisymmetric flow around the

muzzle. Typically, the flaw is limited by:

1) the centerline of the gun,

2) the precursor shock,

3) the outer wall of the gun, and

4) the mouth of the barrel.

mode wolw is assumed to be viscous. The inviscid flow

mode woud bebothunrealistic and numerically unmanageable;a

prlmiaydicsio fthe difcliscan be fon n[18).

A detailed description of the equations of motion is

given in [17], from which the part relevant to the present calcu-

lation is transcribed.

5. Equations of motion

Let V be the velocity vector, t the time, K the coeffi-

cient of heat conduction, and (b the dissipation term. The latter

is a well-known non-negative quadratic form depending on the

space derivatives of the velocity components. Its expressions

for the coordinate system considered in the present paper will be

given later on. We will assume that the viscosity, Pi, is a con-

stant.

A Reynolds number and a Prandtl number can be defined as

Re =0ref uref xref /. Pr Cp MK(6

where c is the specific heat at constant pressure. Using the
p



Equations of motion

same units as in section 2, the equations of motion for a viscous

flow (Navier-SLokes equations) can be written in the form:

D_£ + PV.V 0
Dt

+. Vp C V [1VV. VXVXV
Dt + P PR 3e (17)

DS 1 y V2 ]Dt - p R [( - ) P -

e r

In an inviscid flow, the terms here affected by 1/R doe
not appear. For a proper numerical analysis of such flows, whose

mechanics is governed by the propagation of sound waves and by

the convection of entropy along particle paths, it is convenient

to recast the equations of motion into a form similar to (4):

DP

D V

--+ a VP :0 (18)

DS
- 0

Dt

If the flow is viscous, the basic phenomena of wave pro-

pagation are still present, although modified by the concurrent

effects of diffusion. Therefore, it would not be advisable to
drop the basic integration techniques for convective terms; we

will consequently write the Navier-Stokes equations in the form:

a . DS
;t- V.VP + V Dt

av 1 2 4 V.VV~V
+2q VxVxV + e VP ( 19 VV.)Vv, ]

e (19)

a3+ VVS (Y _ 1y ) 0 + V29
e 

r

(where the material derivatives have been replaced by partial

derivatives, as costumary, and q is the modulus of the velocity).

In what follows, the density will no longer be used explicitly,

and 0 will be redefined in Eq. (21).

-10-
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Conformal mapping

6. Conformal mapping

We will consider two types of flows, both depending on

two space variables: two-dimensional (plane) flows and axi-

symmetric flows. Two Cartesian coordinates, x and y, will be

used for two-dimensional flows. The same symbols will be used

for the axial and radial coordinate, respectively, in any meri-

dional plane of an axi-symmetric flow. The (x,y)-plane will be

called the physical plane. We must provide a computational grid

with a family of lines running from the centerline to the wall

and another family of lines running from the mouth to the shock.

To this effect, we begin by introducing a complex variable

z = x + i y (20)

and assume that, in general, the physical plane will be confor-

mally mapped onto an auxiliary plane, described in terms of a

complex variable €,

i~e
C P e (21)

Such a mapping is:

z = (ro/l)[ (z2- 1/z2)/2 - log z2 - i]

(22)

z 1 I/z 1= 2B + 1/)

where r is the outer radius of the barrel, and B is determined0

to assure correspondence between C=1 and z = -i. Lines of con-

stant P and of constant 6 in the C-plane are mapped onto the grid

shown in Fig. 3. If a = constant line, different from BD (for

example, FG), is used as a boundary, the flow in the physical

plane will occur in the divergent duct having FG as a wall. Let

de ----- Ge (23)

: - 11 -



Conformal mapping

A G

Fig. 3

Z cos(e-Wa) , 3 iri(O-) (25'

9 dz 1 2 (6

Let also t,3be the unit vectors tangent to the 9 constant

line and to the o constant line in the z-plane. and u and v be

the corresponding velocity components. respectively, so that

V = U + V (2?)

It is convenient to note that

ax =~ ;'P 3, ex - 3. ay e (28)

3/0 x a - a/G, yo 3/0, ya PO/G (29)

a2 +0 2 ,x2 +x/ / 2 (30)
x 70 0 *K+/

Go- 90

J -j -Q, (k



Conformal mapping

If T and 3 are the unit vectors parallel to the x- and y-axis.

respectively, and

V U I + V 3 (32)

it follows that

.3=$ ,(33)

U=uZ-v3, V:u9+v4, u=UO+Vz, v:-UZ+VO (34)

For any element ds in space, we have

s2  1 2 2 2 22
ds G2  + 2 d2 + jy dx 3G Gi(35)

if x3 is the angular coordinate in an axi-symmetric problem and j

is a multiplier, equal to 0 for two-dimensional flows and to 1

for axi-symmetric flows. Consequently, the basic vector opera-

tors in (19) can be expressed as follows:

VP = G(Ff + P

2
G (Ov) - ()] - (37)

0W G PC G--
2

VXV - ov + (!)I (38)0 G 0 G/JvuJ

2
S (,)U) + d)I+ (39)

and

4 2 e 2  2 2 2 )2+(e3_e 2 (40)
12e 2 3 e 3 1 ) 3 [(e 1 1 e2 2 ) (22 33 1 1

with

G(u v e G V
u 2 e22 = ve u(-4 1 )] , e 3 3  y j

- 13-



Conformal mapping

el12 [vp- V 1-4 1 )+ 9(ue-u2

and e33 , e3 e equal to zero. We will denote by 0 the only

non-zero component of the curl of V (37):

= G(v - -u D (42)

and by A the divergence of V (39):

A e + e + e (43)11 22 33

and introduce the symbols

G 1+u(2 (44)

E = 2[u(1-4)+v 21 + e3 3  (45)
0 1 2 3

It is easy to see that, in terms of the independent variables p

and 8, the Navier-Stokes equations are:

v- DS
+ -YG(u + -) + YE

t G(uP P  P Dt

u + G(uu0 + 1 u8) + vD + GOP= (-GA - - p K
p 0 P0P 3 p 0 y pR

(46)v C_ 4G £ _
v + G(uv + v) - uD + 2 OPe = ( 4 GA + Gl + jY!)

Se pRe

St + G(uSp + -I)S [(y-1)0 + )-V2 E2/Cp )
r

with 0 defined by (40) and

2 a 3+0 eee/p
V2 G- (0 +oe + ee + JG y(47)

-14-



Computational plane

7. Computational plane

The C-plane, however, is not the computational plane.

Let P=c(0,t) be the image of the precursor shock in the c-plane.

A normalized computational grid is then obtained by letting:

X (P - 7)/(c - 1)

e = W )tanh[a(Y-1)]+ W (48)2 o tanh a 2

T = t

where e is the constant value of 6 which defines the rigid wall0
and which, in the present case, should be equal to zero. The

computation is performed in the (X, Y) plane, using a rectangular

grid with evenly spaced lines; it must be noted, however, that

X=constant lines and Y=constant lines on the physical plane are

generally not orthogonal to each other, since the boundary

0=c(e,t) is not constant with respect to 6. The lack of ortho-

gonality, however, does not affect the accuracy of the results.

Since here two boundaries are defined by constant values

of 8 and of the other two boundaries one is defined by a constant

value of 0 but the other by a value of 0 which depends on 6 and

t, it will be necessary to define X not only as a function of 0

but of 8 and t; therefore, we will write:

X X(P,O,t)

Y Y(e) (49)

T :t

Letting

a11  Xt+GuX +GvX/P , a 12  YGX , b 1 GvY e/

- 15 -



Computational plane

b12 yGY /P , g 12  YGXB/P , a21 = ex (50)

3 =GeXe/0 , b2 1  Ge/0

and

F [(Y-I)* + LVV2 2]/(PR e )
r (51)

c yE -F

eG .4 e p r.
c2 = vD 3 - /  - y

'e (52)

=uD G 4 +j°3 :R -uP0 + Gy]

the equations of motion are recast in the form:

PT+a 11PX +b 11Y+a 12u X+b 12vy+g 1 2Vx +C =0

uT+a 1u x+b 1 lUya2Px +c 2=0

(53)

vT+a 1 vx +b Vy+b 21Py +h 3P x+c 3=0

ST+a Sx+b S = F
T 11 X 11 Y

It is easy to see that the first three equations (53) and the

first three equations (65) have the same form as Equations (23)

of [3). The integration procedure explained in [3] can be ap-

plied. We expect the integration technique to provide a very

good estimate of convection and wave-propagation effects which

are common to inviscid and viscous flows.

- 16-



Rigid boundaries

8. Rigid boundaries

For a viscous flow, the velocity at a rigid boundary is

assumed to vanish. There are no difficulties, thus, in the

determination of u and v. Pressure and entropy require more

care. We consider here the case of an isothermal wall; the tem-

perature, e is a prescribed constant. Because of (17), P and S

are linearly related; therefore,

DS DP6 (-) DT

and consequently, the first of (46) must be replaced by

P + G(uP + -1 P ) + G(u + v 0 (54)
t 0 pGp 6

having taken into account that E vanishes identically. The equa-

tions to be solved are still (53), provided that

a12' b12* g11 and g12 are divided by y and c is set equal to

zero.

Once the pressure has been determined, S is obtained from

(17). Therefore, S is not calculated directly as a result of

dissipation and heat transfer in the flow, because the condition

of constant wall temperature implies some external action, and

(17) gives us the final outcome of such action and the local

variation of pressure.

9. Integration procedure

The equations of motion (53) are integrated following the

general guidelines of Section 6 in [3). We define

.X X +hpy+0
C 1=gllU Y  cI  u C2=bu Y +h

- 17 -
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Integration procedure

(55)Y
C1= 12v C 2 a11 v X h 3 PX +3

x Y
After finding the characteristic slopes, x  (i=1.2) from

X1 1

a i a21  b11 -
Y  b

i i 21

=0 , :0 (56)

a 2  a -Ab b A12 11- i 12 1 i

and letting

a X b Y
a 11  i b11 i

X X i Y Y

2 1 2 1
(57)

DX " a i " DY  b . .

3 XX ' D. A YY
2-1 2-1

the equations to be integrated are:

PX +AAXP -A X X X X C :0
T 1 1 X- 2 2 X2 12 2 X2 1 X1 1

(58)X X X . X .X X
u + D1 (A2x P x- P) + A X u -A A IUxI + C 20
T 21 2 X2 1 Xl 1 2 X2 2 1 X1 2-

and

Y Y Y Y (Y XY Y 0
T 1 1 Y1 2 2 Y2 12 ( 2Vy2-Y vy1 ) + 1

(59)

vT + D21( 2 PY2- 1 PY1 + BA2vy2- 2 X1 Y1+ C2 0

with

X Y
PT :PT + (60)

For discretization, the space derivatives are classified

into three categories: i) the ones explicitly appearing in (58)

and (59), (ii) the ones explicitly appearing in (55). and (iii)

the ones appearing in (51) and (52). The derivatives of the

first category are discretized according to the rules (14) and

-18-



Integration procedure

(15) of [3]; the derivatives of the second category according to

the rules (34) and (35) of £3]; an the derivatives of the third

category are approximated by ordinary centered differences, be-

cause the physical nature of the terms which they affect is dif-

fusion. Few exceptions to the general rules are necessary for

points on rigid boundaries or next to rigid boundaries. For

points on rigid boundaries, the alternate two-point-three-point

approximation is always taken using points inside the flow field.
For points next to rigid boundaries, if use of a point located

behind the wall were required in a three-point approximation, the

latter is substituted by a two-point formula.

10. Numerical treatment of shocks

Shocks are generally present in a compressible flow

field, either as boundaries or imbedded in the flow. In both

cases, they can be treated numerically in the general framework

of the computational technique described in the previous Sec-

tions. We begin with some general considerations.

Let 9 and T be the unit vector normal and tangential to a

shock at any of its points, Q, respectively:

R = N 1£ + N2 , 2 -N2! + N13 (61)

W the shock velocity,

W W R (62)

and u, v the velocity components along 9 and ?, respectively:

1 uNI+VN2 u = uNI-VN 2

(63)
- -U2 v1 v =uN2+vN 1

v---uN 2+vN 1 N2 +N1

The N-component of the velocity relative to the shock is

- 19 -



Numerical treatment of shocks

U :u -W (64)

The relative normal Mach number on the low pressure side of the

shock is

-2
2 u irelM - -
nirel Y 1  (65)

The Rankine-Hugoniot conditions are:

2P

27M 2 -Y+.1
-=P + _______ 

4
2 1 ln +1 (66)

-Y-1 ~ 2 Ye1U 2rel = _+ U lrel + Y+ 1 u 1 ey~i irelreI

We will need the derivatives of P2 and u2rel with respect

to W:

aP 2  4Ulrel
W 2G 2 Y 1) e)

2u irel-( 11

(67)

aU2rel y-1 2 ye1
-4.-

aw y+1 +y+1 -2
u irel

Let us assume that the shock is oriented in the general

direction of the Xzconstant lines; therefore, it can be defined

by its intersections, X , with Y=constant lines. At each inter-

section, we consider two points, one on the low-pressure side and

the other on the high-pressure side. The point on the low-

pressure side must be updated by using information proceeding

from that side only. The point on the high-pressure side must be

updated by using information from both sides. The information

proceeding from the low-pressure side must satisfy the Rankine-

Hugoniot conditions; the information proceeding from the high-

pressure side is carried to the shock along a characteristic.

The acceleration of the shock results from the compatibility of

- 20 -
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the different information. To obtain the characteristic equa-

tion, we should rewrite the equations of motion in a frame rela-

tive to the moving shock, where the Y-coordinate of the shock is

unchanged but its X-coordinate follows the shock in its motion.

Therefore, we will introduce a new set of coordinates,

x = X - X(Y,T)

= Y (68)

T T

and rewrite (65) in the form:

+a P +b P +aL 1 u +b12v +Y 2v +c o
11Px b11 C - 12 UX b12 vC + 12 Vx + 1=0

U' +u 1+ u .b U +a P +h P +c =0
T 1x 11 C 21 x 2 C £(9 (69) :

v+a 11vX b lvc+b2 1 P +n3 P x+c 3
=0

S +a 1 S +b S -F
T 11 X 11 =

where

C11=a11-b11Xsy-XsT , 12 =a 12 -g 1 1X5 y , a21a2-h 2Xsy

(70)

Y 12=12-b12 Xsy , n 3 h 3-b2 Xsy

A characteristic equation may now be obtained, using x and T as

basic independent variables:

(a11--A )(P +x PX )-a 12 (uT+Aux )--f 12 (vT +X vX )+R 0 (71)

where X is the solution of the equation

a 11-" a21 n 3

a12 a 11-A 0 ;0 (72)

Y12  0 11-

-21 -
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that is.
112

}': (1 1 (11(2 +Y1 n )  (73)
11i 1221 1/2 (73

and R comprises all the remaining terms.

Note now that

a12 yGvN1  Y 12 yGvN 2 (74)

w21 1GvNI' n3 2 GvN2

where

2 2 1/2
12 +Y12

yG

Therefore,

C 12u + y 72 v : YGvu

Q 1 + Y12VT YGVu,,-YGv(uNI +vN2 T (76)

a 12ux + Y12Vx = yGvux

Instead of (71) we can write:

(.11-)(PT+APx )-YGv(uT u x)+R I = 0 (77)

where

R1 = R+yGv(uN T-vN 2)

A further simplificaticn is obtained by observing that

~ 1 *A 1/2n ) /
C k 1 - " ( 1 2 2 1 + Y_1 n ( 7 8)2

-yG-GvYGv - y (78)

because of (74) and (75), so that (77) can be written in the

form:

- 22 -
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±_aY (P +XP ) +x +r 1 = 0 (79)

The values of P.' and uT obtained by integrating the

Navier-Stokes equations (69) using information from the high-

pressure side of the shock only, must satisfy (79). On the other

hand, the exact solution of the flow problem in the presence of

the shock, which accounts also for the information from the low-

pressure side and the Rankine-Hugoniot conditions, must satisfy

(79) as well. Therefore, if we write (79) twice, once for the
t-derivatives as obtained from the Navier-Stokes equations (that

is, using for the shock point the same integration procedure

which is applied to other points) and again for the exact

T-derivatives and we subtract one equation from the other, the

simple result is obtained:

(NS) 6 (NS)
± (P -P  ) + u-u :0 (80)

where the derivatives obtained from the Navier-Stokes equations

are labeled (NS) and the exact derivatives are unlabeled.

The latter derivatives can obviously be expressed in the

form:

aP 2 au 2 t
Pt = P + - r , + Ws (81)

where f' is a derivative computed considering W as a constant.T !
The acceleration of the shock is thus obtained: V

+ .( N S ) -( N S ) -
-a(P -T *) Y(UT  -uT )

Wt = ±-a P2/3W + y au2/3WI
2 2 (82)

Since both the starred derivatives and the derivatives indicated

by (NS) are computed using the same initial values, (82) can be

replaced by

±a(p (NS)_p,) (6(NS)_ .)
WAt ±a 3P /3W + y au /W2 2 (83)
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where PO and Ui are the values on the high-pressure side of the

shock obtained from updated values on the low-pressure side by

applying the Rankine-Hugoniot conditions to a shock whose

geometry has been updated but whose velocities, W, are still the

same as at the beginning of the integration step. This result

[4] is remarkable since it provides an extremely simple method

for calculating the shock acceleration although it relies on the

same basic concepts which have been shown to be necessary for a

proper, physically correct, handling of shocks [5].

We will now consider first the case where the shock is a

boundary, moving into a gas at rest, and then the case of an im-

bedded shock.

In the case of a shock moving into a gas at rest, let us

assume that the shock is a right boundary of the computational

field. It is, thus, defined by X=l; in this case, X, E and T

coincide with X, Y and T, respectively and a1 1 =a1 1, a2 1 a2 1,

S12=a12' Y 12 =g12, n 3=h3. The characteristic reaching the shock

from the high-pressure side is a right-running characteristic,

and in the preceding equations, whereas a ± appears, the upper

sign must be used. Note in addition that u1=O and vl=O; there-

fore, U lrl-W and M 2 W /Y. In this case, obviously, the
lrel=nlrel

low-pressure side values are known without any need for comput-

ing; the (NS)-values on the high-pressure side are obtained to-

gether with and using the same procedure as for interior grid

points.

For an imbedded shock, whose location does not generally

coincide with a grid line, we use a simplified procedure to ob-

tain the values at the shock on the low-pressure side and the

(NS) values on the high-pressure side. On the low-pressure side,

instead of integrating (69) (which would require a special, and

not easy, redefinition of approximations for the X- and

c-derivatives), we simply assume that the values at the ihock can

be extrapolated from the two adjacent grid points on the same

yzconstant line, both at the end of the predictor and the correc-

tor level. On the high-pressure side, we assume that the T-

derivatives on the shock are equal to the T-derivatives at the

grid point next to the shock on the same Y=constant line. Note,

however, that
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fr = fT + fx XsT (84)

for any function f. The values of fT at the shock are assumed to
be the same as at the next grid point on the high-pressure side,

on the same Y=constant line. The values of f are approximatedx
as follows:

fx (fA-fs +C (f B-f )]/AX (85)

where c:(XAXs )/AX and A is the grid point next to the shock on
the high-pressure side and B is the next grid point. This formu-

la provides a smooth transition when the shock crosses an
X=constant line.

For an imbedded shock, thus, the calculation proceeds as
follows: In the predictor stage, after updating all grid points,

the low-pressure side of the shock is obtained by extrapolation
and (84) is also applied to P, u, v and S. The values on the
high-pressure side are updated by adding f At to the initial

T (NS)values of f; the values so obtained are the predicted f . The

predicted f* are obtained by applying (66) to the predicted
values on the low-pressure side. Then, (83) is applied and W is

temporarily updated, but its original value is retained in

storage. The geometry of the shock is updated, considering that,
in virtue of (62), (28) and (33),

Ps0 = G W/N1  (86)

and using the approximations:

0 (t+At) = 0 (t) + P At + 1t At 2

5ss t (Stt

where the second derivatives are obtained by differentiating

(86). In the corrector stage, the procedure outlined above for
the predictor stage is repeated through the application of (84).

The updating of the values on the high-pressure side is obtained

by adding

1 f(pred))A t(fT fT )A

to the predicted values. The corrected f* are obtained by apply-
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ing (66) to the corrected values on the low-pressure side, with

the original value of W. Then, (83) is applied again and W is

definitively updated. The Rankine-Hugoniot conditions (66) are

applied once more to the corrected values on the low-pressure

side using the final value of W. to obtain the final values on

the high-pressure side. The entropy is also computed from

S = S + P -P - Yln(u (88)2 1 2 1 irel 2rel

At this stage, it is convenient to correct the values at

the grid point next to the shock on the high-pressure side.

Pressure and velocity components are interpolated from the values

at the shock and the following grid point. Entropy is also in-
terpolated considering that it is carried along a streamline. 4

11. Details of the calculation

The calculation is started at a small, positive value of

t, when the precursor shock has already moved from the muzzle

mouth. Initially, the shock is assumed to lie on a P~constant

line (with the value of the constant, c 0, slightly greater than

1), and all parameters pertinent to the shock are assumed equal I
to their values at t=O. Note that, since the flow behind the

shock is uniform, the shock Mach number defines pressure, veloci-

ty and entropy. Uniform flow is assumed between the muzzle mouth

and the shock, if the gas is inviscid. The velocity component, v

is made equal to zero throughout.

Initially, the computational region is divided only into
two strips along the X-axis. Along the Y-axis we consider asI
many partitions as necessary to provide sufficient resolution.

Since the 'Plow is viscous, we need some modifications to

the initial conditions near the wall, to account for the vanish-

ing of the velocity at the wall. The precursor shock cannot reach
the wall; the perturbation front, elsewhere in the form of a

shock, becomes a characteristic at the wall. Therefore, on the

initial Oc line which represents the shock, P is assumed equal

-26-
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Details of the calculation

to zero at the wall. On the next wall point, P is taken equal to

one half of its value behind the shock. The wall temperature is
assumed equal to 1 at any time. The entropy is defined accord-

ingly. The u-velocity component Is taken equal to one half of

its value behind the shock along the second e~constant line from

F the wall.

From the initial conditions, the calculation proceeds as

detailed above. We note that the centerline is computed as a
symmetry line, not as a rigid wall. For computational purposes,

the shock geometry is prolonged to the wall with a constant value

of c, and the wall point is computed as any other wall point,
taking advantage of the fact that the state of the gas in front

of the perturbed region is known. A similar procedure is au-

tomatically applied to any other point on the perturbation front,
if the shock happens to lose its strength completely; that is,

the point on the perturbation front is computed as any interior,
shockless point, taking advantage of the fact that the state of

the gas in front of the perturbed region is known.

As the calculation proceeds, the number of grid intervals

in the X-direction is doubled every time (c-1) on the centerline
exceeds 1.4i times its initial value or the value it had at the
previous doubling, until the total number of intervals is 16.

Certain features of the flow are common to the inviscid

and viscous models. An expansion appears from the beginning near
the inlet of the duct; the region of maximum expansion moves from

left to right, but at a slower speed than the precursor shock.
Consequently, even with the precursor shock losing strength, the
pressure behind it remains higher than the lowest pressure al-

ready attained along the duct. The particles are accelerated and
then decelerated again. A compression wave appears, which tends
to steepen up, as every comipression wave does, and another shock
results eventually.

In the presence of viscosity, the recompression wave and

the secondary shock strongly interact with the boundary layer in

the process of formation. The latter thickens and separates very

soon. Between the main stream and the wall, a wide dead-water
region appears, where the pressure tends to equalize the ambient

-27-
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pressure (in front of the precursor shock). The separated flow

never reattaches and becomes a plume. Fr-on the separation point

on, the plume is insensitive to the wall geometry and the flow
inside it is essentially inviscid. The results of the calcula-

tion of a steady, inviscid flow in a plume can be used to judge
whether the viscous calculation approaches its theoretical asymp-

tote, and how well.

Three cases have been calculated, with different values

of 8 and of the initial conditions. The first deals with a high

value of Got by virtue of which the flow occurs in a divergent

(two-dimensional) channel. The second and the third use 6 =0.
0

The second, however, does not contemplate initial conditions con-

sistent with the flow in the barrel described in Section 3; rath-

er, it has initial conditions consistent with a shock-tube exper-

iment f 192. The third case is consistent with the barrel flow

described in Section 3.

12. First example

In the first example,. has been taken equal to 1.2.

and r 0equal to 2.2603. Therefore, the calculation attempts to
describe the flow in a diverging channel, inserted at the end of

a straight shock tube (Fig. 4). The flow is assumed to be two-

dimensional. The stretching parameter, 0, has been taken equal

to 2, and the sector between 6=6 and e~n/2 is divided into 16
0

intervals. Consequently, we obtain a fair accumulation of grid

lines near the wall, and still work with a reasonably small

number of lines. It is clear, however, that the resolution is

well below the limits which are usually recommended for a good

description of Reynolds number effects; the lack of an adequate

resolution is particularly felt in the vicinity of the plume

shear layer. Nevertheless, the present results are very en-

couraging, just because very good qualitative results are ob-

tained with such a coarse mesh. The Reynolds number used in this
case is extremely high (10 6), so that the flow should be con-

sidered as inviscid practically everywhere, except across the
boundary 'Layer. We know, however, as we said in the preceding
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Fig. 4

section, that the steady configuration of the flow in a channel

whose area increases beyond any limit is a plume, that is, a

separated flow. The plume exists, regardless of the value of the

Reynolds number; only the thickness of the shear layer limiting

the plume reveals what the Reynolds number is. :n the present

case, we should expect the formation of a plume with a limiting

shear layer of practically vanishingly small thickness; but we

also know that such a picture is going to be distorted by the ar-
tificial Reynolds number of the computational mesh, which is
smaller by orders of magnitude.

The Prandtl number is taken equal to 1, and Y equal to

1.4. The temperature at the wall is assumed to be equal to 1,

that is, to the temperature of the gas at rest. The value of P

at the inlet is 7.6d87. Consistent values of u and S are

u=1.6551, S=O.1702. The Mach number at the inlet is barely

supersonic. M=1.J40.

The progression of the precursor shock and the flow evo-

lution behind it are shown in Fig. 5 by sets of isobars Jrawn at

different instants of time. The figures represent the lower half

of the channel. Cn the symmetry lne. notches lenote intervals

of inlt length. The Isobars correspond to 2ontant values of P,

spaced as "ndlcated oy the val>e f JREF in each pioture; the
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lines marked with 0 are sonic lines.

At t=0.6665, the expansion has barely begun and is still
very mild; at t=1.3718 it is stronger (the lowest value of P is

less than 0.5) and the recompression is clearly taking shape.
Within the first unit length of the channel, the interaction of

up- and down-running characteristics is very clear (an obvious
consequence of M being very close to 1 at the start); the

recompression, therefore, appears almost as unidimensional. At

t=2.1100, the recompression is clearly piling up at two unit

lengths from the entrance; the lowest value of P is below the
ambient value. As indicated by the modified shape of the sonic

line, a small separated region appears; this effect is much

clearer in Fig. 6, where pictures of streamlines are shown. A
shock is soon formed, and it is evident in the isobar plot at

t=3.4774 (the thickness of different arcs of the shock is propor-
tional to its local strength). The second drawing in Fig. 6

clearly shows the separation of the flow at t=l4.0914. The

streamlines in the separated region should not be interpreted as

picturing a flow as strong as the main flow; as a matter of fact,

the velocities in the separated region are extremely small, in

general.

The isobar picture at t=~4.5097 shows a changing pattern;
the recompression shock shrinks towards the symmetry line, and

all isobars with negative values of P (that is, below ambient

pressure), as well as the P=O line, show a definite tendency to
bend horizontally in the direction of the flow. At t=6.2530, the
qualitative description of the plumse is correct, but resolution

has become so poor that most of the quantitative results are dis-

torted.

Nevertheless, it may be interesting to see how close the
flow is to a steady, inviscid pline. at this early stage of evo-

lution. to this effect, a program was written to describe a
steady, two-dimensional, shockless inviscid plzme evolving from
the same inlet conditions along the same channel geometry until

the ambient pressure is reached, and then continuing inside the
region delimited by a p~constant streamline. The corresponding

isobar pattern, with values of P spaced 0.25 apart, is shown in

the upper part of Fig. 7. 1sobars from the last plot of Fig. 5,

32I
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FUR 35. V.T% 3208 6-2530, LINEn 7

Fig. 6(b)

interpolated at the same values of P, are shown in the lower part
of Fig. 7. At this stage. with no supporting calculations on a

finer grid, it is not possible to state whether the overexpansion
shown by the latter is a temporary effect, tending to disappear
in a further stage of evolution, or simply the result of lack of

resolution (note that the steady plume calculation has 20 inter-
vals along any line orthogonal to the symmetry 1.ine and hundreds

of steps along the channel, whereas the l~ower figure has been
computed on the grid of Fig. 4).

13. Second example

A second example was run, based on experiments performed
on a muzzle jet flow simulator :!9:. -;he exper,-mentai device

,,!nsist3 of a 3hoCK tube, opening into a low-pressure :namber.

The fl.ow is axisymmetricai . The Duter radius -,f 'nre 3hock tube
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Fig. 7

is 2.08 times the inner radius. The latter i.s 19 mmz. At sea

level. the speed of sound is 360 m/sec; therefore our reference
velocity is 304.25 rn/3ec. Assuming that the kinematic viscosity

of air is 1.6xl10 m 2/sec, the Reynolds number is approximately

36C0. We take the Prandtl number equal to 1 and Y =1.4J. We will

try to simulate the experiment shown in Fig. 7 of £19]; there-
fore. we will use a value of P at the shock tube mouth equal to

3.40. Consistent values of u and S are u=4.8250, S=1.1387. The

P~ach number is 1.6680.

The evolution of the flow is shown in Fig. 8 by sets of

isobars drawn at different instants of time, as it was miade in
Fig. 5. Cur results can be compared to Fig. 7 of [191, taking

into account that our reference time is 0.0624 msec.

In Fig. 9. the location of the precursor shock and of the
recompression shock on the centerline is plotted as a f-.unction of

time; exper,.mental results from Fig. 1'u of 1.9: are al-zz plotted

in the same figure.
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14I. Third example

Finally, a calculation was made to simulate experiments

by Schmidt and Shear on the M-16 rifle [20]. Assuming the inner
radius of the gun as the unit length, the outer radius is 2.2603
and the distance to be traversed by the no3e of the bullet before

it reaches the muzzle is 150.82. We are now using a program
which couples the inner and outer flow calculations, and we

determine the inner flow as in the first example. The conditions
outside the gun at the instant of firing are assumed as the stan-
dard sea level conditions. The pressure ratio immediately after
the precursor shock at the instant of its exit is 11.61 (slightly
less than the one mentioned in [20); the difference is due to the

fact that the flow velocity behind the shock when it reaches the

mouth of the barrel is lower than the bullet velocity when the
base of the bullet separates from the muzzle). To compare calcu-
lations and experiments, we note first that our reference time
(equal to the reference length, 2.7813 rrx, multiplied by the
square root of Yv and divided by the speed of sound of the gas at
rest (360 m/sec)J, is 9.1 4sec. The precursor shock exits from
the barrel at t=108, that is, .983 msec after firing. To reach
that stage, about 700 computational steps were necessary, in
which the one-dimensional internal flow alone was computed.

A set of isobar plots, at different instants of time, is

presented in Fig. 10. The structure of the precursor blast com-

pares well with the experimental evidence. The plot at

t=110.1263 and the one at t=113.3647 are very close to the pic-
tures shown as a) and b) in Fig. 3 of (20], which correspond to
the same instants of time. A striking agreement is shown by the
locations of blast shock and recompression shock on the center-
line (Fig. 12). The straight lines in the figure are the ones
defined in [203 as the best fit for their experimental values.
Note that the instant at which the base of the bullet separates
from the muzzle is, in our non-dimensional time, practically

equal to 10. The position of the recompression shock is shown,
at successive instants of time, in Fig. 12. Here we may note an

-39-



Third example

KjPI , K.T o 160 0 18.10 1. Lt ' I RIN . K.T" 1700 183 3347. LINE w I

OREF.LAST RWe 0.202 2.40S DREF,LAST REF- 0.206 2.666

Ii
. 1. K.Tv 2-610 6a92. LINE* I REV.LAST Re 6.200 2.460

Fig. 10(a)

-40



Third example

Uww I. K,Tx 1700 109.1911, LINEs 1 DREF,LAST REF2 8.200 2.400

;UNI 2, K.Tz Z2i30 189.644t. LINEs I OREFLAST REFu 8.290 2.406

Fig. 10(b)



Third example

RU 2- K 27030 110 1-N3. LINEv I DREF.LAST REFs .200e 2.400

KTz. .f MO3 III V714. LIN(E- I CREF-LAST REF. 0.468 2.400

n'-.'~



Third example

QUN 2. (.-T 3900 113.3647, LINE- I OREFLAST REF: 8.408 2.406

RUN 2 KoTs 4414 111.5234, LIHEw I OREFLAST REF. 0.506 2.588

Fig. 10(d)

.........



Third example

10 //

5- 0
RECOMPRESSION SHOCK 00
it 0.625  0

/~ 0 0 0 0

0 0 PRECURSOR SHOCK

~FITS FROM EXPERIMENTS,
REF. 20

8 8CALCULATION 5

5i10 50

*41



Third example

interesting numerical effect, which confirms our belief that

shocks should be fitted. In the initial phase of evolution the

shock, as computed, clearly shows two parts, one of which is what

(20] calls a Mach disc and the other is the beginning of a plume

shock; both are in the right position, according to the experi-

mental evidence. Unfortunately, the way the imbedded shock is
computed does not allow a single shock with a sharp corner to

subsist indefinitely; the corner itself is dragged backwards by
the 'plume' branch which, in turn, develops oscillations, sending

numerical errors to other regions of the flow. Since a perfect
determination of the plume shock was not considered of primary

importance in this phase of the research, that branch was artifi-

cially deleted and not allowed to form again. In other words,
our current results reflect an attempt to 'capture' the plume

shock; the effect is clearly shown in Fig. 12; the edge of the

plume is pushed outwards and the Mach disc (which itself, for be-ing fitted, is properly located) is much wider than in the exper-

t- 06 I.0 U9 164 ZJ2 3.7"7 5.3.6 . .

.106.107 .T

w~ao.'-5/102

Fig. 12
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iments.

To complete the description of the flow, we present a

streamline picture, a plot of constant Mach lines, a plot of

isentropics and a plot of velocity vectors in Figs. 13 and 14.
All these figures refer to the instant of emersion of the bullet.

15. Second phase of precursor shock evolution

The last output of the run presented in the preceding

section shows the perturbed flow field around the muzzle as the
bullet is about to emerge from the barrel. To continue the

analysis until the bullet is totally emerged, the computational

program must be modified. Although only few statements have to

be added or changed in the program used for the preceding

analysis in order to produce the program used for the current

one,the underlying algebraic manipulations are much more compli-

cated because the X=O line is now the image of the bullet's mov-

ing wall (in full or partially); consequently, a time-dependent

mapping function is to be used.

In lieu of (22), we use the mapping sequence:

z = (r /l r)[(z -llz 1)/2 - log 
2

0 1 1 g 1

z I + l/z I  2B(4 2 + 1/ 2
(89)

2- 1)(;2 + 1) 1 [( + 1)]

C ( - d2 /C)/(1 - d )

where 6 and d are functions of time. This means that the time

associated with the coordinates, x and y, of the physical plane,

cannot be confused with the time associated with the coordinates,

0 and e , of the mapped plane. We will, thus, denote the first

by t and the second by :. The value of d is determined to assure
correspondence between 4 i and z S, where a is the abscissa

of the nose of the bullet. The value of 6 is made equal to 1/2
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Second phase of precursor shock evolution

RUMN 40. KT~m 2966 7.76S4, LINEm ?

RU4 40, K,Tm 2966 7.7684, LINE- 2 OREF,LAST REFm 0.406 5.60I

Fi:g. 13



Second phase of precursor shock evolution

RUN 40# K.Tm 2966 7.?84, LINE@ 4 OREF,LAST REF 1.200 1.808

RUN 40. K.T" 2966 7.7664, LINE" $

\~~ .. . . ...

Fig. 14



Second phase of precursor shock evolution

when the cylindrical part of the bullet begins showing out of the

barrel, and kept constant thereafter. During the emersion of the

bullet nose, 6 is varied between 0 and 1/2 using some arbitrary

law, for example linearly.

The new mapping is provided to maintain the computational

grid as close to orthogonal as possible, despite the appearance

of a new boundary, and to keep the line X:O as close as possible

to a P=constant line. By no means, however, can such a simple

mapping as (89) make the X:O line to coincide exactly with a

0:constant line. It is necessary, thus, to introduce the image

of the boundary, opposite to the precursor shock, in the form

P = b(e,T), and to normalize the grid with the following

transformation, which replaces (48): 4
X (P - b)/(c - b)

e tanh((Y-1)] +r (90)
o tanha

T :

In addition to the definitions of z, C, g, £ and 8 given by

(20), (21), (23), (26) and (24), we need to define the quanti-

ties:

f alo : f + i f2 (91)

at 1 2

3log g + i i2 (92)at 1 2

From (89) we obtain

1 ; -1ti ' dCf I 2 ( 1- )dt - log dt 1

1 (93)

4'=-2ddt[1- + + 2f +  log 1 t
-2 C2 2 2, 2 (9C) +

1-d -d C *d %1 (4

The relations given by (28), (29), (30) and (31) must be comple-

mented by the following expressions:
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Second phase of precursor shock evolution

t 1Pf' 8t = f 2 , Z 0 , T : 0 , : 1 (95)
x y t

(3 f 2 -9fl)a/G , Y -(3f1+f2)P/G

(96)

ta 0 t e  0 T 1

GT =g( 1 -4 1f 1 +42 f2) W T 2 2-41f 2-0 2f 1 (97)

Between 0, 8, T and X, Y, T, the following relations hold:

0X I/Xp, PY - X/(XPYe) ' PT X /X0

8 :0 e= I/y 0 o (98)

TX: 0, T : 0 , T :

X0 : '/ox Xe - y/(Pxy , X T - /PX

Y: 0 , Ye = l/By, YT 0 (99)

To 0 ,T e  0 , T T :1

Consequently,

xx :O/GX , X Y -(ZXB/pXo 4 )/GYe , xT =-OX /GX -(ef 1-3f 2 )P/G

YX = /GX , Yy : (-SX 8 /PXP)p/GY, YT  3 -XT/GXP-(3f1+zf 2 )0/G

tX = 0 t 0, t T T1 (100)

and

2 1 2G x = (94 1+4 2 )G2/P, Gy (3 1 €-9 2 )G2/P , Gt = GO 1

(101)

W x (to 2 4 1 )G/ w (C* 1 4 2 t

From (90), it follows that

X0--I/(c-b), X8 :X0 [(X-1)b -Xc8], XT=Xo((X-1)bT-Xc ] (102)
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Second phase of precursor shock evolution

2 2e [D- (e-1/2) 2>/D (103)Y

with

D (i - e )/tanh a (104)

Certain second derivatives are also needed, to evaluate viscous

terms:

2
Xoo=0 , X e=X (bece)

Xee=XoeXe/Xp+Xp[Xe(be-ce)+(X-l)bee -x cee
]  (105)

2YPO , Ype =0 . Yee : (2a/D ) YO 0ir2

Let Q be a point on the physical plane:

Q = xT + yZ (106)

Because of (100), it turns out that

G Q = (1/X )' GYeQY - (Xe/X) + P3
(107)

G QT -(X /X +Pr )I - of23T TT 0 1 2

The normal, A to an X = constant line is defined by

R . 0 (108)

Therefore, its components in the I-and 3-directions, respective-

ly, are

NI  1/V , N2 = (Xe/pX)N 1  (109)

with

v = [1 (Xe/pXp)2 1/2 (110)
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Second phase of precursor shock evolution

At the body, 0 b, X8 /pX0  -be/b, XT/X p  -b , b T  bT

and

b b+P + be = b + Pf + b f (111)
t t ea T 1, b~ 2

Let

F(x,y,t) 0 (112)

be the equation of the X 0 line in the physical plane. Then

Fy = 0, that is

F x(b e-3b) + Fy(3be+0b) = 0 (113)

Therefore,

b /b = (3F -F )/(ZF &ZFy) (114)x_ y x y

Similarly, FT 0, that is

Fx [b -b(Zf1_f2)]+Fy[3b -b(Zf1+Cf2)]+GFt 0 (115)

Therefore,

b[(Zf 1 4 f 2 )Fx +(f i+f 2 )Fy ]-GF
bt : F +3Fx y (116)

In the present run, the bullet has been assumed as a

cylinder, with an elliptic nose. Let x be the abscissa of theo
center of the ellipse, which travels along the centerline at a

constant speed; let a be the major axis of the ellipse. There-

fore, for the nose,

2 2 2 2
F (x+x) +a y -a 2 0 (117)

fx = 2(x+x) fy= 2a2 y  Ft  2(xxo)xot (118)

In the cylindrical part,
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Second phase of precursor shock evolution

F y+1 , F =0, F =1, Ft  0 (119)x yt

The calculation is then carried on in a way similar to

the one performed in the absence of the bullet. Obviously, the

velocity of the flow on the wall of the bullet equals x 0. In0

addition, as a first step towards the simulation of spillage
between bullet and barrel, the pressure at the rim of the bore is

allowed to increase linearly with time, beginning when the nose

of the bullet is almost completely out.

A further remark is necessary for a proper evaluation of

the shocks. The image of a shock in the mapped plane is

i e (120)
5 5

In the (p,e) plane, we see variations in the time T:

( " dCs dzs  alog s  1
sT dz dt s at

The first term in the right hand side is produced by the varia-

tion of z in time, the second term by the changes in the mapping

parameters (the derivative is made at a constant z ). The shock

point, however, is always taken on a e= constant line. There-

fore,

ie
(Y) : ( ) Te : (P ) C/s/P (122)

that is,

( C /0 dz s/dt + C f (123)

With Q defined by (106),

W dQ (12'4)dQ

(33) can be used to replace I and 3 and then (123) to replace x

and yst after simplifying, one obtains

(PS) : GW/N 1 + c (f 1 f2 N 2N ) (125)
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Second phase of precursor shock evolution

which replaces (86).

The sequence of isobar plots of Fig. 15 describes the

computed flow field around a protruding bullet which has the

speed and the size, if not exacto the shape, of the bullet in

[202. Contrary to all the proeceding plots, the ones in Fig. 15

are confined to a relatively mall region in the vicinity of the

bullet, since the rest o the flow is uneventful. The mesh is

indeed very coarse; never eless, a good amount of information is

still obtainable. /
It should be/noted that the speed of the flow in front of

the bullet is higher than the speed of the bullet itself; in

fact, the flow is'accelerated by the supersonic expansion occur-/
ring around thq"lip of the muzzle. Therefore, the advancing bul-

let acts on e surrounding flow as a receding wall acts on a gas

at rest, an4 produces a further expansion.

A-
/

/

16. 'tonclusions and recommendations

The results of our numerical tests show that the basic

features of our technique, viz. grid definition, integration

scheme and shock fitting, do indeed provide very high accuracy.

The minimal amount of grid points used also assures that the

present calculations are much faster than any other, provided

that the stepsizes are comparable. No total running time on a

large-scale computer can be mentioned yet, since all calculations

have been performed on a minicomputer (PDP 11/40) which not only

is very slow, by current standards, but also has storage require-

ments that in turn force the program to be written in a highly

inefficient way.

Before giving the analysis a full certificate of relia-

bility, however, further research is needed. The shock-fitting

section of the program must be recoded, in order to let the plume

branch of the shock be tracked; this may imply a deep revision of

some of the discretized equations used in the fitting because the

plume shock stretches obliquely with respect to the computational
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Conclusion3 and recommendations

RUN 62. KCTa H6 8 1332 LINEN I OPEF.LAST RE~u a.;j Z.0

RUN 63, K.Ts 150 0.3926, LINEN I OREF.LRST REFa 0.400 2.486

Fig. 15(a)
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Conclusions and recommendations

RUN 62. K.Ta 300 1 2424, LIHE* I OREFLAST REFe 0.500 4.000

RUN 62, K.Tv 400 1,92. LIINE I OREFDLAST RET' 1.000 4.30S

Fig. 15(b)
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Conclusions and recommendations

grid, whereas the recompression shock in the vicinity of the

'entprlinp tpnda to lie parallel to ozconstant lines. In addi-

tion, some numerical (tifricuities may artie at the I nt.prn'pottori

of the two branches of the shock, which has the physical nature

of a triple point.

The dependence of the results on the Reynolds number

should also be investigated thoroughly. So far, we have concen-

trated grid lines near the rigid wall but we have made no attempt

to compare our flows to boundary value results in that neighbor-

hood. Moreover, the edge of the plume is a region of high

viscous stresses, which our mesh is totally inadequate to calcu-

late. Three different approaches should be considered, to im-

prove the present results. The first consists of using a

stretching in the 0-direction which concentrates grid lines where

the vorticity is the highest. The second (and more difficult,

but perhaps richer in consequences) consists of a fitting of the

shear layer, the middle line of which should be tracked as a line

floating within mesh points.The third approach would push this

concept to its extreme consequences, totally eliminating the cal-

culation of viscous terms and replacing shear layer by vortical

discontinuities. An inviscid calculation, not requiring extreme-

ly fine grids and the processing of the viscous terms, would

yield a very welcome reduction in running time.

If such a stage could be reached, we would consider it

proper to compare results with those of a (not yet existing)

purely inviscid code, where the mechanism for the onset of a

plume configuration is provided by the appearance of a short

shock, normal to the wall, totally independent on the recompres-

sion shock, as described in the present paper.
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